Зависимые события в теории вероятности примеры. Теоремы сложения и умножения вероятностей: основные задачи. Зависимые и независимые события. Условная вероятность

Главная / Боги

Пусть вероятность события В не зависит от появления события А .

Определение. Событие В называют независимым от события А , если появление события А не изменяет вероятности события В , т.е. если условная вероятность события В равна его безусловной вероятности:

Р А (В ) = Р (В ). (2.12)

Подставив (2.12) в соотношение (2.11), получим

Р (А )Р (В ) = Р (В )Р В (А ).

Р В (А ) = Р (А ),

т.е. условная вероятность события А в предположении, что наступило событие В , равна его безусловной вероятности. Другими словами, событие А не зависит от события B .

Лемма (о взаимной независимости событий) : если событие В не зависит от события А , то и событие А не зависит от события В ; это означает, что свойство независимости событий взаимно .

Для независимых событий теорема умножения Р (АВ ) = Р (А ) Р А (В ) имеет вид

Р (АВ ) = Р (А ) Р (В ), (2.13)

т.е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

Равенство (2.13) принимают в качестве определения независимых событий. Два события называются независимыми, если появление одного из них не меняет вероятность появления другого.

Определение. Два события называют независимыми , если вероятность их совмещения равна произведению вероятностей этих событий; в противном случае события называют зависимыми .

На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.

Пример . Найти вероятность совместного поражения цели двумя орудиями, если вероятность поражения цели первым орудием (событие А ) равна 0,8, а вторым (событие В ) – 0,7.

Решение. События А и В независимые, поэтому, по теореме умножения, искомая вероятность

Р (АВ ) = Р (А )Р (В ) = 0,7 ×0,8 = 0,56.

Замечание 1. Если события А и В независимы, то независимы также события А и , и В , и . Действительно,

Следовательно,

, или .

, или .

т.е. события А и В независимы.

Независимость событий и В , и – следствие доказанного утверждения.

Понятие независиомости может быть распространено на случай n событий.

Определение. Несколько событий называют попарно независимыми , если каждые два из них независимы. Например, события А , В , С попарно независимы, если независимы события А и В , А и С , В и С .

Для того чтобы обобщить теорему умножения на несколько событий, введем понятие независимости событий в совокупности.

Определение. Несколько событий называют независимыми в совокупности (или просто независимыми), если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных. Например, если события А 1 , A 2 , А 3 независимы в совокупности, то независимы события А 1 и A 2 , А 1 и А 3 , A 2 и А 3 ; А 1 и A 2 А 3 , A 2 и А 1 А 3 , А 3 и А 1 A 2 . Из сказанного следует, что если события независимы в совокупности, то условная вероятность появления любого события из них, вычисленная в предположении, что наступили какие-либо другие события из числа остальных, равна его безусловной вероятности.



Подчеркнем, что если несколько событий независимы попарно, то отсюда еще не следует их независимость в совокупности. В этом смысле требование независимости событий в совокупности сильнее требования их попарной независимости.

Поясним сказанное на примере. Пусть в урне имеется 4 шара, окрашенные: один – в красный цвет (А ), один – в синий цвет (В ), один – в черный цвет (С ) и один –во все эти три цвета (АВС ). Чему равна вероятность того, что извлеченный из урны шар имеет красный цвет?

Так как из четырех шаров два имеют красный цвет, то Р (А ) = 2/4 = 1/2. Рассуждая аналогично, найдем Р (В ) = 1/2, Р (С ) = 1/2. Допустим теперь, что взятый шар имеет синий цвет, т.е. событие В уже произошло. Изменится ли вероятность того, что извлеченный шар имеет красный цвет, т.е. изменится ли вероятность события А ? Из двух шаров, имеющих синий цвет, один шар имеет и красный цвет, поэтому вероятность события А по-прежнему равна 1/2. Другими словами, условная вероятность события А , вычисленная в предположении, что наступило событие В , равна его безусловной вероятности. Следовательно, события А и В независимы. Аналогично придем к выводу, что события А и С , В и С независимы. Итак, события А , В и С попарно независимы.

Независимы ли эти события в совокупности? Оказывается, нет. Действительно, пусть извлеченный шар имеет два цвета, например синий и черный. Чему равна вероятность того, что этот шар имеет и красный цвет? Лишь один шар окрашен во все три цвета, поэтому взятый шар имеет и красный цвет. Таким образом, допустив, что события В и С произошли, приходим к выводу, что событие А обязательно наступит. Следовательно, это событие достоверное и вероятность его равна единице. Другими словами, условная вероятность Р ВС (А )= 1 события А не равна его безусловной вероятности Р (А ) = 1/2. Итак, попарно независимые события А , В , С не являются независимыми в совокупности.

Приведем теперь следствие из теоремы умножения.

Следствие. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Доказательство. Рассмотрим три события: А , В и С . Совмещение событий А , В и С равносильно совмещению событий АВ и С , поэтому

Р (АВС ) = Р (АВ×С ).

Так как события А , В и С независимы в совокупности, то независимы, в частности, события АВ и С , а также А и В . По теореме умножения для двух независимых событий имеем:

Р (АВ×С ) = Р (АВ )Р (С ) и Р (АВ ) = Р (А )Р (В ).

Итак, окончательно получим

Р (АВС ) = Р (А )Р (В )Р (С ).

Для произвольного n доказательство проводится методом математической индукции.

Замечание. Если события А 1 , А 2 , ...,А n независимы в совокупности, то и противоположные им события также независимы в совокупности.

Пример. Найти вероятность совместного появления герба при одном бросании двух монет.

Решение. Вероятность появления герба первой монеты (событие А )

Р (А ) = 1/2.

Вероятность появления герба второй монеты (событие В )

Р (В ) = 1/2.

События А и В независимые, поэтому искомая вероятность по теореме умножения равна

Р (АВ ) = Р (А )Р (В ) = 1/2 ×1/2 = 1/4.

Пример. Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение. Вероятность того, что из первого ящика вынута стандартная деталь (событие А ),

Р (А ) = 8/10 = 0,8.

Вероятность того, что из второго ящика вынута стандартная деталь (событие В ),

Р (В ) = 7/10 = 0,7.

Вероятность того, что из третьего ящика вынута стандартная деталь (событие С ),

Р (С ) = 9/10 = 0,9.

Так как события А , В и С независимые в совокупности, то искомая вероятность (по теореме умножения) равна

Р (АВС ) = Р (А )Р (В )Р (С ) = 0,8×0,7×0,9 = 0,504.

Приведем пример совместного применения теорем сложения и умножения.

Пример. Вероятности появления каждого из трех независимых событий А 1 , А 2 , А 3 соответственно равны р 1 , р 2 , р 3 . Найти вероятность появления только одного из этих событий.

Решение . Заметим, что, например, появление только первого события А 1 равносильно появлению события (появилось первое и не появились второе и третье события). Введем обозначения:

B 1 – появилось только событие А 1 , т.е. ;

B 2 – появилось только событие А 2 , т.е. ;

B 3 – появилось только событие А 3 , т.е. .

Таким образом, чтобы найти вероятность появления только одного из событий А 1 , А 2 , А 3 , будем искать вероятность P (B 1 + B 2 + В 3) появления одного, безразлично какого из событий В 1 , В 2 , В 3 .

Так как события В 1 , В 2 , В 3 несовместны, то применима теорема сложения

P (B 1 + B 2 + В 3) = Р (В 1) + Р (В 2) + Р (В 3). (*)

Остается найти вероятности каждого из событий В 1 , В 2 , В 3 . События А 1 , А 2 , А 3 независимы, следовательно, независимы события , поэтому к ним применима теорема умножения

Аналогично,

Подставив эти вероятности в (*), найдем искомую вероятность появления только одного из событий А 1 , А 2 , А 3.

Если при наступлении события вероятность событияне меняется, то событияиназываютсянезависимыми .

Теорема: Вероятность совместного появления двух независимых событий и (произведения и) равна произведению вероятностей этих событий.

Действительно, так как событияинезависимы, то
. В этом случае формула вероятности произведения событийипринимает вид.

События
называютсяпопарно независимыми , если независимы любые два из них.

События
называютсянезависимыми в совокупности (или просто независимыми) , если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных.

Теорема: Вероятность произведения конечного числа независимых в совокупности событий
равна произведению вероятностей этих событий.

Проиллюстрируем различие в применении формул вероятности произведения событий для зависимых и независимых событий на примерах

Пример 1 . Вероятность попадания в цель первым стрелком равна 0,85, вторым 0,8. Орудия сделали по одному выстрелу. Какова вероятность того, что в цель попал хотя бы один снаряд?

Решение: P(A+B) =P(A) +P(B) –P(AB) Так как выстрелы независимы, то

P(A+B) = P(A) +P(B) –P(A)*P(B) = 0.97

Пример 2 . В урне находится 2 красных и 4 черных шара. Из нее вынимают подряд 2 шара. Какова вероятность того, что оба шара красные.

Решение: 1 случай. Событие А – появление красного шара при первом вынимании, событие В – при втором. Событие С – появление двух красных шаров.

P(С) =P(A)*P(B/A) = (2/6)*(1/5) = 1/15

2 случай. Первый вынутый шар возвращается в корзину

P(С) =P(A)*P(B) = (2/6)*(2/6) = 1/9

Формула полной вероятности.

Пусть событие может произойти только с одним из несовместных событий
, образующих полную группу. Например, в магазин поступает одна и та же продукция от трех предприятий и в разном количестве. Вероятность выпуска некачественной продукции на этих предприятиях различна. Случайным образом отбирается одно из изделий. Требуется определить вероятность того, что это изделие некачественное (событие). Здесь события
– это выбор изделия из продукции соответствующего предприятия.

В этом случае вероятность события можно рассматривать как сумму произведений событий
.

По теореме сложения вероятностей несовместных событий получаем
. Используя теорему умножения вероятностей, находим

.

Полученная формула называется формулой полной вероятности .

Формула Байеса

Пусть событие происходит одновременно с одним изнесовместных событий
, вероятности которых
(
) известны до опыта (вероятности априори ). Производится опыт, в результате которого зарегистрировано появление события, причем известно, что это событие имело определенные условные вероятности
(
). Требуется найти вероятности событий
если известно, что событиепроизошло (вероятности апостериори ).

Задача состоит в том, что, имея новую информацию (событие Aпроизошло), нужно переоценить вероятности событий
.

На основании теоремы о вероятности произведения двух событий

.

Полученная формула носит название формулы Байеса .

Основные понятия комбинаторики.

При решении ряда теоретических и практических задач требуется из конечного множества элементов по заданным правилам составлять различные комбинации и производить подсчет числа всех возможных таких комбинаций. Такие задачи принято называть комбинаторными .

При решении задач комбинаторики используют правила суммы и произведения.

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность (вероятность события) наступления интересующего нас события от того, как развиваются остальные события. В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события? Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события. События А и В называются независимыми, если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы. Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример 1 . Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р1*р2=0,56. Что произойдет с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример 2. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается. Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).

Эта схема очень удобна для анализа последовательных случайных событий. Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример 3. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.


По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045. Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля. И все-таки польза от наших оценок есть. Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные. Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять. Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример 3. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов. Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение.

Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.


Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает. Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки.

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных. Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).


2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшегомесяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Несколько событий называются независимыми в совокупности , если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми , если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события Bи обозначается P{A|B}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости - в виде P{B|A}≠P{B}.

Вероятность события в испытаниях Бернулли. Формула Пуассона.

Повторными независимыми испытаниями, испытаниями Бернулли или схемой Бернулли называются такие испытания, если при каждом испытании имеются только два исхода - появление события А или и вероятность этих событий остается неизменной для всех испытаний. Эта простая схема случайных испытаний имеет большое значение в теории вероятностей.

Наиболее известным примером испытаний Бернулли является опыт с последовательным бросанием правильной (симметричной и однородной) монеты, где событием А является выпадение, например, "герба", ("решки").

Пусть в некотором опыте вероятность события А равна P(А)=р , тогда , где р+q=1. Выполним опыт n раз, предположив, что отдельные испытания независимы, а значит исход любых из них не связан с исходами предыдущих (или последующих) испытаний. Найдем вероятность появления событий А точно k раз, скажем только в первых k испытаниях. Пусть - событие, заключающееся в том, что при n испытаниях событие А появиться точно k раз в первых испытаниях. Событие можно представить в виде

Поскольку опыты мы предположили независимыми, то

41)[стр2] Если ставить вопрос о появлении события А k-раз в n испытаниях в произвольном порядке, то событие представимо в виде

Число различных слагаемых в правой части этого равенства равно числу испытаний из n по k , поэтому вероятность событий , которую будем обозначать , равна

Последовательность событий образует полную группу независимых событий . Действительно, из независимости событий получаем

В заданиях ЕГЭ по математике встречаются и более сложные задачи на вероятность (нежели мы рассматривали в части 1), где приходится применять правило сложения, умножения вероятностей, различать совместные и несовместные события.

Итак, теория.

Совместные и несовместные события

События называются несовместными, если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Например, бросая игральную кость, можно выделить такие события, как выпадение четного числа очков и выпадение нечетного числа очков. Эти события несовместны.

События называются совместными, если наступление одного из них не исключает наступления другого.

Например, бросая игральную кость, можно выделить такие события, как выпадение нечетного числа очков и выпадение числа очков, кратных трем. Когда выпадает три, реализуются оба события.

Сумма событий

Суммой (или объединением) нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

При этом сумма двух несовместных событий есть сумма вероятностей этих событий:

Например, вероятность выпадения 5 или 6 очков на игральном кубике при одном броске, будет , потому что оба события (выпадение 5, выпадение 6) неовместны и вероятность реализации одного или второго события вычисляется следующим образом:

Вероятность же суммы двух совместных событий равна сумме вероятностей этих событий без учета их совместного появления:

Например, в торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдем вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов (то есть или в одном, или в другом, или в обоих сразу).

Вероятность первого события «кофе закончится в первом автомате» также как и вероятность второго события «кофе закончится во втором автомате» по условию равна 0,3. События являются совместными.

Вероятность совместной реализации первых двух событий по условию равна 0,12.

Значит, вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов есть

Зависимые и независимые события

Два случайных события А и В называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. В противном случае события А и В называют зависимыми.

Например, при одновременном броске двух кубиков выпадение на одном из них, скажем 1, и на втором 5, – независимые события.

Произведение вероятностей

Произведением (или пересечением) нескольких событий называется событие, состоящее в совместном появлении всех этих событий.

Если происходят два независимых события А и В с вероятностями соответственно Р(А) и Р(В), то вероятность реализации событий А и В одновременно равна произведению вероятностей:

Например, нас интересует выпадение на игральном кубике два раза подряд шестерки. Оба события независимы и вероятность реализации каждого из них по отдельности – . Вероятность того, что произойдут оба эти события будет вычисляться по указанной выше формуле: .

Подборку задач на отработку темы смотрите .

© 2024 crimeagril.ru -- Игровой клуб